

Hamiltonian Cycles in 4-Connected 4-Regular Claw-free Graphs

Jorge L. B. Pucohuaranga, Letícia R. Bueno, Daniel M. Martin

CMCC, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil

Resumo

Since the decision problem of the hamiltonian cycle problem is NP-Complete, one recent trend has been to search for long cycles or related structures. In this aspect, a hamiltonian prism is an interesting relaxation of a hamiltonian cycle [2]. The *prism over a graph G* is the Cartesian product $G \square K_2$ of G with the complete graph on two vertices. A prism can be seen as the graph obtained by joining the corresponding vertices of two copies of G. A graph G is *prism-hamiltonian* if its prism has a hamiltonian cycle.

Plummer [3] has conjectured that every 4-connected 4-regular claw-free graph is hamiltonian and this conjecture remains open [1]. Also, the author has shown that 4-connected 4-regular claw-free graphs fall into three classes \mathcal{G}_0 , \mathcal{G}_1 and \mathcal{G}_2 , of which only \mathcal{G}_1 is known to be hamiltonian. In our work, we prove that \mathcal{G}_0 is hamiltonian and that \mathcal{G}_2 is prism-hamiltonian, also corroborating to a conjecture that the prism over every 4-connected 4-regular graph is hamiltonian [2].

Given a graph G, let $G^1 = G \Box K_2$ and $G^q = G^{q-1} \Box K_2$, for q > 1. We show that, for every connected graph G, it holds that G^q is hamiltonian for all $q \ge \lfloor \log_2 \Delta(G) \rfloor$, where $\Delta(G)$ is the maximum degree of G. Also, we show that this proof is equivalent to prove that $G \Box Q_n$ is prism-hamiltonian for some value of n where Q_n is the *n*-cube graph.

Referências

- H. J. Broersma, Zdenek Ryjácek, and Petr Vrána. How many conjectures can you stand? a survey. Graphs and Combinatorics, 28(1):57-75, 2012.
- [2] T. Kaiser, Z. Ryjáček, D. Král, M. Rosenfeld, and H.-J. Voss. Hamilton cycles in prisms. Journal of Graph Theory, 56:249-269, 2007.

[3] M. D. Plummer. A note on Hamilton cycles in claw-free graphs. Congressus Numerantium, 96113-122, 1993.